4-1.Complex numbers
hard

For two non-zero complex number $z_1$ and $z_2$, if $\operatorname{Re}\left(z_1 z_2\right)=0$ and $\operatorname{Re}\left(z_1+z_2\right)=0$, then which of the following are possible ?

$(A)$ $\operatorname{Im}\left(z_1\right) > 0$ and $\operatorname{Im}\left(z_2\right) > 0$

$(B)$ $\operatorname{Im}\left(z_1\right) < 0$ and $\operatorname{Im}\left(z_2\right) > 0$

$(C)$ $\operatorname{Im}\left(z_1\right) > 0$ and $\operatorname{Im}\left(z_2\right) < 0$

$(D)$ $\operatorname{Im}\left( z _1\right) < 0$ and $\operatorname{Im}\left( z _2\right) < 0$

Choose the correct answer from the options given below :

A

$B$ and $D$

B

$B$ and $C$

C

$A$ and $B$

D

$A$ and $C$

(JEE MAIN-2023)

Solution

$z _1= x _1+ i y _1$

$z _2= x _2+ iy _2$

$\operatorname{Re}\left(z_1 z_2\right)=x_1 x_2-y_1 y_2=0$

$\operatorname{Re}\left(z_1+z_2\right)=x_1+x_2=0$

$x_1$ and $x_2$ are of opposite sign

$y_1$ and $y_2$ are of opposite sign

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.