4-1.Complex numbers
hard

दो अशून्य सम्मिश्र संख्या $\mathrm{z}_1$ तथा $\mathrm{z}_2$ के लिये यदि $\operatorname{Re}\left(\mathrm{z}_1 \mathrm{z}_2\right)=0$ तथा $\operatorname{Re}\left(\mathrm{z}_1+\mathrm{z}_2\right)=0$ हो, तो निम्न में से कौनसा संभव है ?

($A$) $\operatorname{Im}\left(\mathrm{z}_1\right)>0$ and $\operatorname{Im}\left(\mathrm{z}_2\right)>0$

($B$) $\operatorname{Im}\left(\mathrm{z}_1\right)<0$ and $\operatorname{Im}\left(\mathrm{z}_2\right)>0$

($C$) $\operatorname{Im}\left(\mathrm{z}_1\right)>0$ and $\operatorname{Im}\left(\mathrm{z}_2\right)<0$

($D$) $\operatorname{Im}\left(\mathrm{z}_1\right)<0$ and $\operatorname{Im}\left(\mathrm{z}_2\right)<0$

नीचे दिये गये विकल्पों में से सही उत्तर का चयन कीजिए :

A

$B$ तथा $D$

B

$B$ तथा $C$

C

$A$ तथा $B$

D

$A$ तथा $C$

(JEE MAIN-2023)

Solution

$z _1= x _1+ i y _1$

$z _2= x _2+ iy _2$

$\operatorname{Re}\left(z_1 z_2\right)=x_1 x_2-y_1 y_2=0$

$\operatorname{Re}\left(z_1+z_2\right)=x_1+x_2=0$

$x_1$ and $x_2$ are of opposite sign

$y_1$ and $y_2$ are of opposite sign

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.