The roots of the determinant equation (in $x$) $\left| {\,\begin{array}{*{20}{c}}a&a&x\\m&m&m\\b&x&b\end{array}\,} \right| = 0$

  • A

    $x = a,b$

  • B

    $x = - a, - b$

  • C

    $x = - a,b$

  • D

    $x = a, - b$

Similar Questions

The number of values of $\alpha$ for which the system of equations:   $x+y+z=\alpha$ ;  $\alpha x+2 \alpha y+3 z=-1$ ;  $x+3 \alpha y+5 z=4$    is inconsistent, is

  • [JEE MAIN 2022]

If the system of equations $x + ay = 0,$ $az + y = 0$ and $ax + z = 0$ has infinite solutions, then the value of $a$ is

  • [IIT 2003]

$\left| {\,\begin{array}{*{20}{c}}1&5&\pi \\{{{\log }_e}e}&5&{\sqrt 5 }\\{{{\log }_{10}}10}&5&e\end{array}\,} \right| = $

If $f(\theta ) =\left| {\begin{array}{*{20}{c}}
1&{\cos {\mkern 1mu} \theta }&1\\
{ - \sin {\mkern 1mu} \theta }&1&{ - \cos {\mkern 1mu} \theta }\\
{ - 1}&{\sin {\mkern 1mu} \theta }&1
\end{array}} \right|$ and $A$ and $B$ are respectively the maximum and the minimum values of $f(\theta )$, then $(A , B)$ is equal to

  • [JEE MAIN 2014]

Let $S_1$ and $S_2$ be respectively the sets of all $a \in R -\{0\}$ for which the system of linear equations

$a x+2 a y-3 a z=1$

$(2 a+1) x+(2 a+3) y+(a+1) z=2$

$(3 a+5) x+(a+5) y+(a+2) z=3$

has unique solution and infinitely many solutions. Then

  • [JEE MAIN 2023]