Obtain the scalar product of unit vectors in Cartesian co-ordinate system.
If $\vec{A}$ and $\vec{B}$ are two vectors satisfying the relation $\vec{A} . \vec{B}=[\vec{A} \times \vec{B}]$. Then the value of $[\vec{A}-\vec{B}]$. will be :
$\overrightarrow A = 2\hat i + 4\hat j + 4\hat k$ and $\overrightarrow B = 4\hat i + 2\hat j - 4\hat k$ are two vectors. The angle between them will be ........ $^o$
The angle between two vectors $ - 2\hat i + 3\hat j + \hat k$ and $\hat i + 2\hat j - 4\hat k$ is ....... $^o$
If $\overrightarrow{ A }=(2 \hat{ i }+3 \hat{ j }-\hat{ k }) \;m$ and $\overrightarrow{ B }=(\hat{ i }+2 \hat{ j }+2 \hat{ k })\; m$. The magnitude of component of vector $\overrightarrow{ A }$ along vector $\vec{B}$ will be $......m$.