If $A =a_1 \hat{ i }+b_1 \hat{ j }$ and $B =a_2 \hat{ i }+b_2 \hat{ j }$, the condition that they are perpendicular to each other is

  • A
    $\frac{a_1}{b_1}=-\frac{b_2}{a_2}$
  • B
    $a_1 b_1=a_2 b_2$
  • C
    $\frac{a_1}{a_2}=-\frac{b_1}{b_2}$
  • D
    None of these

Similar Questions

The resultant of the two vectors having magnitude $2$ and $3$ is $1$. What is their cross product

If $\vec A,\vec B$ and $\vec C$ are vectors having a unit magnitude. If $\vec A + \vec B + \vec C = \vec 0$ then $\vec A.\vec B + \vec B.\vec C + \vec C.\vec A$ will be 

The component of vector $A = 2\hat i + 3\hat j$ along the vector $\hat i + \hat j$is

What is the angle between $(\overrightarrow P + \overrightarrow Q )$ and $(\overrightarrow P \times \overrightarrow Q )$

Show that $a \cdot( b \times c )$ is equal in magnitude to the volume of the parallelepiped formed on the three vectors, $a, b$ and $c$.