Four equal charges $Q$ are placed at the four corners of a square of each side is $'a'$. Work done in removing a charge $-Q$ from its centre to infinity is

  • [AIIMS 1995]
  • A

    $0$

  • B

    $\frac{{\sqrt 2 {Q^2}}}{{4\pi {\varepsilon _0}a}}$

  • C

    $\frac{{\sqrt 2 {Q^2}}}{{\pi {\varepsilon _0}a}}$

  • D

    $\frac{{{Q^2}}}{{2\pi {\varepsilon _0}a}}$

Similar Questions

A proton of mass $m$ and charge $e$ is projected from a very large distance towards an $\alpha$-particle with velocity $v$. Initially $\alpha$-particle is at rest, but it is free to move. If gravity is neglected, then the minimum separation along the straight line of their motion will be

  • [KVPY 2018]

A particle of mass $m$ and charge $q$ is placed at rest in a uniform electric field $E$ and then released. The kinetic energy attained by the particle after moving a distance $y$ is

  • [AIPMT 1998]

Hydrogen ion and singly ionized helium atom are accelerated, from rest, through the same potential difference. The ratio of final speeds of hydrogen and helium ions is close to......

  • [JEE MAIN 2020]

The electrostatic potential $V$ at a point on the circumference of a thin non-conducting disk of radius $r$ and uniform charge density $\sigma$ is given by equation $V = 4 \sigma r$. Which of the following expression correctly represents electrostatic energy stored in the electric field of a similar charged disk of radius $R$?

At a distance $l$ from a uniformly charged long wire, a charged particle is thrown radially outward with a velocity $u$ in the direction perpendicular to the wire. When the particle reaches a distance $2 l$ from the wire, its speed is found to be $\sqrt{2} u$. The magnitude of the velocity, when it is a distance $4 l$ away from the wire is (ignore gravity)

  • [KVPY 2011]