एक वर्ग की प्रत्येक भुजा की लम्बाई $'a'$ है, इसके चारों कोनों पर $4$ समान $Q$ आवेशों को रखा जाता है। उसके केन्द्र से अनन्त तक
$-Q$ आवेश को हटाने में किया गया कार्य है
$0$
$\frac{{\sqrt 2 {Q^2}}}{{4\pi {\varepsilon _0}a}}$
$\frac{{\sqrt 2 {Q^2}}}{{\pi {\varepsilon _0}a}}$
$\frac{{{Q^2}}}{{2\pi {\varepsilon _0}a}}$
$m$ द्रव्यमान और $q$ आवेश वाले दो एक-समान कणों को काफी दूर से प्रारंभिक गति $v$ से एक दूसरे की तरफ फेका गया। इन आवेशों की निकटतम दूरी (closest approach) क्या होगी ?
दो बिन्दु आवेशों $100\,\mu \,C$ और $5\,\mu \,C$ को क्रमश: $A$ और $B$ बिन्दुओं पर रखा गया है, जहाँ $AB = 40\,$ सेमी है। बाह्य बल द्वारा आवेश $5\,\mu \,C$ को $B$ से $C$ तक विस्थापित करने में किया गया कार्य होगा (जहाँ $BC = 30\,$ सेमी, कोण $ABC = \frac{\pi }{2}$ तथा $\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}$ न्यूटन-मी$^2$/कूलॉम$^{2}$)......$J$
निम्न चित्र में दिखाये अनुसार एक बिन्दु आवेश $6$ एक समान आवेशों से सममित रूप से घिरा है। स्थिर वैद्युत बलों के द्वारा आवेश $q$ को केन्द्र से अनन्त तक चलाने में कार्य होगा
$R$ त्रिज्या के एक गोलीय कवच के पृष्ठ पर कुल आवेश $+Q$ एकसमान रूप से फैला हुआ है। गोलीय कवच का केंद्र मूल बिन्दु $( x =0)$ पर स्थित है। बहुत दूरी पर स्थित दो बिन्दु आवेशों $+q$ तथा $-q$ को लाकर एक के बाद एक $x=-a / 2$ तथा $x=+a / 2( < R)$ Work done = ......
विरामावस्था से एक बिन्दु धन आवेश को एक एकसमान घनत्व के धनात्मक रेखीय आवेश से $r _{0}$ दूरी पर छोड़ते हैं। बिन्दु आवेश की चाल $( v )$ रेखीय आवेश से तात्क्षणिक दूरी $r$ के फलन के रूप में समानुपाती होगी :-