The work done in carrying a charge of $5\,\mu \,C$ from a point $A$ to a point $B$ in an electric field is $10\,mJ$. The potential difference $({V_B} - {V_A})$ is then
$+ 2\,kV$
$-2\, kV$
$+ 200\, V$
$-200\, V$
Three charges $Q,( + q)$ and $( + q)$ are placed at the vertices of an equilateral triangle of side l as shown in the figure. If the net electrostatic energy of the system is zero, then $Q$ is equal to
A bullet of mass $2\, gm$ is having a charge of $2\,\mu C$. Through what potential difference must it be accelerated, starting from rest, to acquire a speed of $10\,m/s$
A particle of mass $100\, gm$ and charge $2\, \mu C$ is released from a distance of $50\, cm$ from a fixed charge of $5\, \mu C$. Find the speed of the particle when its distance from the fixed charge becomes $3\, m$. Neglect any other force........$m/s$
$(a)$ In a quark model of elementary particles, a neutron is made of one up quarks [ charge $\frac{2}{3}e$ ] and two down quarks [ charges $ - \frac{1}{3}e$ ]. Assume that they have a triangle configuration with side length of the order of ${10^{ - 15}}$ $m$. Calculate electrostatic potential energy of neutron and compare it with its mass $939$ $Me\,V$. $(b)$ Repeat above exercise for a proton which is made of two up and one down quark.
If an electron moves from rest from a point at which potential is $50\, volt$ to another point at which potential is $70\, volt$, then its kinetic energy in the final state will be