Four persons can hit a target correctly with probabilities $\frac{1}{2},\frac{1}{3},\frac{1}{4}$ and $\frac {1}{8}$ respectively. If all hit at the target independently, then the probability that the target would be hit, is
$\frac{{25}}{{32}}$
$\frac{{25}}{{192}}$
$\frac{{7}}{{32}}$
$\frac{{1}}{{192}}$
One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?
$E:$ 'the card drawn is a spade'
$F:$ 'the card drawn is an ace'
The probability that a man will be alive in $20$ years is $\frac{3}{5}$ and the probability that his wife will be alive in $20$ years is $\frac{2}{3}$. Then the probability that at least one will be alive in $20$ years, is
For the three events $A, B$ and $C, P$ (exactly one of the events $A$ or $B$ occurs) = $P$ (exactly one of the events $B$ or $C$ occurs)= $P$ (exactly one of the events $C$ or $A$ occurs)= $p$ and $P$ (all the three events occur simultaneously) $ = {p^2},$ where $0 < p < 1/2$. Then the probability of at least one of the three events $A, B$ and $C$ occurring is
In a class of $125$ students $70$ passed in Mathematics, $55$ in Statistics and $30$ in both. The probability that a student selected at random from the class has passed in only one subject is
In two events $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ then $A$ and $B$ are