If $\mathrm{A}$ and $\mathrm{B}$ are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ find $\mathrm{P}$ $($ not $\mathrm{A}$ and not $\mathrm{B})$
It is given that, $\mathrm{P}(\mathrm{A}) \frac{1}{4}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$
$\mathrm{P}$ $($ not on $\mathrm{A} $ and not on $\mathrm{B})$ $=\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B^{\prime}}\right)$
$\mathrm{P}$ $($ not on $\mathrm{A} $ and not on $\mathrm{B})$ $=\mathrm{P}\left((\mathrm{A}^{\prime} \cup \mathrm{B})\right)$ $\left[A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}\right]$
$=1-P(A \cup B)$
$=1-[P(A)+P(B)-P(A \cap B)]$
$=1-\frac{5}{8}$
$=\frac{3}{8}$
One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?
$E:$ 'the card drawn is a spade'
$F:$ 'the card drawn is an ace'
One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?
$E:$ ' the card drawn is a king and queen '
$F:$ ' the card drawn is a queen or jack '
Three ships $A, B$ and $C$ sail from England to India. If the ratio of their arriving safely are $2 : 5, 3 : 7$ and $6 : 11$ respectively then the probability of all the ships for arriving safely is
If $P(A) = 2/3$, $P(B) = 1/2$ and ${\rm{ }}P(A \cup B) = 5/6$ then events $A$ and $B$ are
Given two independent events $A$ and $B$ such $P(A)=0.3,\, P(B)=0.6 .$ Find $P(A $ and not $B)$