- Home
- Standard 11
- Mathematics
14.Probability
normal
If ${A_1},\,{A_2},...{A_n}$ are any $n$ events, then
A
$P\,({A_1} \cup {A_2} \cup ... \cup {A_n}) = P\,({A_1}) + P({A_2}) + ... + P\,({A_n})$
B
$P\,({A_1} \cup {A_2} \cup ... \cup {A_n}) > P\,({A_1}) + P({A_2}) + ... + P\,({A_n})$
C
$P\,({A_1} \cup {A_2} \cup ... \cup {A_n}) \le P\,({A_1}) + P({A_2}) + ... + P\,({A_n})$
D
None of these
Solution
(c) For any two events $A$ and $B,$we have
$P(A \cup B) = P(A) + P(B) – P(A \cap B)$
$\therefore \,\,\,P(A \cup B) \le P(A) + P(B).$
Using principle of mathematical induction, it can be easily established that $P\left( {\mathop \cup \limits_{i = 1}^n {A_i}} \right) \le \sum\limits_{i = 1}^n {P({A_i}).} $
Standard 11
Mathematics
Similar Questions
easy