If ${A_1},\,{A_2},...{A_n}$ are any $n$ events, then

  • A

    $P\,({A_1} \cup {A_2} \cup ... \cup {A_n}) = P\,({A_1}) + P({A_2}) + ... + P\,({A_n})$

  • B

    $P\,({A_1} \cup {A_2} \cup ... \cup {A_n}) > P\,({A_1}) + P({A_2}) + ... + P\,({A_n})$

  • C

    $P\,({A_1} \cup {A_2} \cup ... \cup {A_n}) \le P\,({A_1}) + P({A_2}) + ... + P\,({A_n})$

  • D

    None of these

Similar Questions

The probability that $A$ speaks truth is $\frac{4}{5}$, while this probability for $B$ is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact

  • [AIEEE 2004]

In a certain population $10\%$ of the people are rich, $5\%$ are famous and $3\%$ are rich and famous. The probability that a person picked at random from the population is either famous or rich but not both, is equal to

For the three events $A, B$ and $C, P$ (exactly one of the events $A$ or $B$ occurs) = $P$ (exactly one of the events $B$ or $C$ occurs)= $P$ (exactly one of the events $C$ or $A$ occurs)= $p$ and $P$ (all the three events occur simultaneously) $ = {p^2},$ where $0 < p < 1/2$. Then the probability of at least one of the three events $A, B$ and $C$ occurring is

  • [IIT 1996]

Events $\mathrm{A}$ and $\mathrm{B}$ are such that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ and $\mathrm{P}$ $($ not $ \mathrm{A}$ or not $\mathrm{B})=\frac{1}{4} .$ State whether $\mathrm{A}$ and $\mathrm{B}$ are independent?

Three athlete $A, B$ and $C$ participate in a race competetion. The probability of winning $A$ and $B$ is twice of winning $C$. Then the probability that the race win by $A$ or $B$, is