ભૌતિક અચળાંકોના નીચે દર્શાવેલા સમીકરણો માથી (તેમના સામાન્ય ચિન્હોથી દર્શાવેલા) કયું એકમાત્ર સમીકરણ કે જે અલગ અલગ માપન પદ્ધતિમાં સમાન મૂલ્ય આપે?
$\frac{{ch}}{{2\pi \varepsilon _0^2}}$
$\frac{{{e^2}}}{{2\pi {\varepsilon _0}Gm_e^2}}$
$\frac{{{\mu _0}{\varepsilon _0}G}}{{{c^2}h{e^2}}}$
$\frac{{2\pi \sqrt {{\mu _0}{\varepsilon _0}} h}}{{c{e^2}G}}$
$(\rho )$ ઘનતા $(r)$ ત્રિજ્યા $(S)$ પૃષ્ઠતાણ ધરાવતા પ્રવાહીના ટીપાંના દોલનોનો આવર્તકાળ $(T)$ નો કયો સંબંધ સાચો પડે?
રાશિ $f$ ને ${f}=\sqrt{\frac{{hc}^{5}}{{G}}}$ મુજબ રજૂ કરવામાં આવે છે, જ્યાં ${c}$ પ્રકાશનો વેગ, $G$ ગુરુત્વાકર્ષણનો સાર્વત્રિક અચળાંક અને $h$ પ્લાન્કનો અચળાંક છે તો $f$ નું પરિમાણ નીચે પૈકી કોના જેવુ હશે?
જો બળ $ (F),$ વેગ $(V)$ અને સમય $(T)$ ને મૂળભૂત એકમ તરીકે લેવામાં આવે, તો દળનું પરિમાણ શું થાય?
બે પરમાણુઓ વચ્ચેની આંતરક્રિયાના બળને
$F=\alpha \beta \,\exp \,\left( { - \frac{{{x^2}}}{{\alpha kt}}} \right);$
વડે આપવામાં આવે છે, જ્યાં $x$ એ અંતર, $k$ બોલ્ટઝમેન અચળાંક અને $ T$ તાપમાન છે. તથા $\alpha$ અને $\beta$ એ અન્ય અચળાંકો છે. $\beta$ નું પરિમાણિક શું થાય?