નીચે આપેલ ગણમાંથી સમાન ગણ પસંદ કરો :
$A=\{2,4,8,12\}, B=\{1,2,3,4\}, C=\{4,8,12,14\}, D=\{3,1,4,2\}$
$E=\{-1,1\}, F=\{0, a\}, G=\{1,-1\}, H=\{0,1\}$
$A=\{2,4,8,12\} ; B=\{1,2,3,4\} ; C=\{4,8,12,14\}$
$D=\{3,1,4,2\} ; E=\{-1,1\} ; F=\{0, a\}$
$G=\{1,-1\} ; H=\{0,1\}$
It can be seen that
$8 \in A, 8 \notin B, 8 \notin D, 8 \notin E, 8 \notin F, 8 \notin G, 8 \notin H$
$\Rightarrow A \neq B, A \neq D, A \neq E, A \neq F, A \neq G, A \neq H$
Also, $2 \in A, 2 \notin C$
$\therefore A \neq C$
$3 \in B, 3 \notin C, 3 \notin E, 3 \notin F, 3 \notin G, 3 \notin H$
$\therefore B \neq C, B \neq E, B \neq F, B \neq G, B \neq H$
$12 \in C, 12 \notin D, 12 \notin E, 12 \notin F, 12 \notin G, 12 \notin H$
$\therefore C \neq D, C \neq E, C \neq F, C \neq G, C \neq H$
$4 \in D, 4 \notin E, 4 \notin F, 4 \notin G, 4 \notin H$
$\therefore D \neq E, D \neq F, D \neq G, D \neq H$
Similarly, $E \neq F, E \neq G, E \neq H$
$F \neq G, F \neq H, G \neq H$
The order in which the elements of a set are listed is not significant.
$\therefore B=D$ and $E=G$
Hence, among the given sets, $B = D$ and $E = G$.
જો $S = \{ 0,\,1,\,5,\,4,\,7\} $.તો ગણ $S$ ના ઉપગણની સંખ્યા મેળવો.
સમાન ગણની જોડી શોધો (જો હોય તો). તમારા ઉત્તર માટે કારણ આપો.
$A = \{ 0\} ,$
$B = \{ x:x\, > \,15$ અને $x\, < \,5\}, $
$C = \{ x:x - 5 = 0\} ,$
$D = \left\{ {x:{x^2} = 25} \right\},$
$E = \{ \,x:x$ એ સમીકરણ ${x^2} - 2x - 15 = 0$ નું ધન પૂર્ણાક બીજ છે. $\} $
ગણ દર્શાવે છે ? તમારો જવાબ ચકાસો : બધા જ યુગ્મ પૂર્ણાકોનો સમૂહ
ડાબી બાજુએ યાદીની રીતે દર્શાવેલ ગણોને જમણી બાજુએ તેના જ ગુણધર્મની રીતે દર્શાવેલા ગણો સાથે સાંકળો.
$(i)$ $\{1,2,3,6\}$ | $(a)$ $\{ x:x$ એ અવિભાજ્ય સંખ્યા છે અને $6$ નો અવયવ છે. $\} $ |
$(ii)$ $\{2,3\}$ | $(b)$ $\{ x:x$ એ $10$ કરતાં નાની અયુગ્મ પ્રાકૃતિક સંખ્યા છે. $\} $ |
$(iii)$ $\{ M , A , T , H , E , I , C , S \}$ | $(c)$ $\{ x:x$ એ પ્રાકૃતિક સંખ્યા છે અને $6$ નો અવયવ છે. $\} $ |
$(iv)$ $\{1,3,5,7,9\}$ | $(d)$ $\{ x:x$ એ $\mathrm{MATHEMATICS}$ શબ્દનો મૂળાક્ષર છે. $\} $ |
ગણ સમાન છે ? કારણ આપો : $A = \{ x:x$ એ $\mathrm{FOLLOW}$ શબ્દનો મૂળાક્ષર છે $\} ,$ $B = \{ y:y$ એ $\mathrm{WOLF}$ શબ્દનો મૂળાક્ષર છે. $\} $