Give the geometric representations of $2x + 9 = 0$ as an equation

$(i)$ in one variable

$(ii)$ in two variables

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(i)$ $2 x +9=0[$ An equation in one variable $]$

We have : $2 x+9=0 \Rightarrow 2 x=-9 \Rightarrow x=\frac{-9}{2}$

which is a linear equation in one variable ${ }^{\prime} x ^{\prime}$ only. Its solution is the point $\frac{-9}{2}$ on the number line as shown below.

$(ii)$ $2 x +9=0$ [An equation in two variables]

We can write $2 x+9=0$ as $2 x+0 y+9=0$ or $2 x=-9+0 y$

or $x=\frac{-9+0 y}{2}$

$\therefore$ When $y =1, \quad x =\frac{-9+0(1)}{2}=\frac{-9}{2}$

When $y=2, \quad x=\frac{-9+0(2)}{2}=\frac{-9}{2}$

When $y=3$ $x=\frac{-9+0(3)}{2}=\frac{-9}{2}$

Thus, we get the following table :

$x$ $\frac{-9}{2}$ $\frac{-9}{2}$ $\frac{-9}{2}$
$y$ $1$ $2$ $3$

Now, plotting the ordered pairs $\left(\frac{-9}{2},\,1\right),\,\,\left(\frac{-9}{2},\, 2\right),$ and $\left(\frac{-9}{2}, \,3\right)$ on a graph paper and joining them, we get a line $PQ$ as solution of $2 x +9=0$.

1104-s41

Similar Questions

Which one of the following options is true, and why ? 

$y=3 x+5$ has

$(i)$ a unique solution,

$(ii)$ only two solutions,

$(iii)$ infinitely many solutions

Write four solutions for equations : $\pi x+y=9$

Given the point $(1,\, 2)$, find the equation of a line on which it lies. How many such equations are there ?

Find two solutions for each of the following equations :

$(i)$ $4 x+3 y=12$

$(ii)$ $2 x+5 y=0$

$(iii)$ $3 y+4=0$

From the choices given below, choose the equation whose graphs are given in Fig. $(i)$ and Fig. $(ii)$.

For Fig. $(i)$                                            For Fig. $(ii)$

$(a)$ $y=x$                                              $(a)$ $y=x+2$

$(b)$ $x+y=0$                                     $(b)$ $y=x-2$

$(c)$ $y=2 x$                                           $(c)$ $y=-x+2$

$(d)$ $2+3 y=7 x$                                $(d)$ $x+2 y=6$