Given $15 \cot A =8,$ find $\sin A$ and $\sec A .$
Consider a right-angled triangle, right-angled at $B.$
$\cot A=\frac{\text { Side adjacent to } \angle A }{\text { Side opposite to } \angle A }$
$=\frac{A B}{B C}$
It is given that,
$\cot A=\frac{8}{15}$
$\frac{A B}{B C}=\frac{8}{15}$
Let $AB$ be $8 k$. Therefore, $BC$ will be $15 k ,$ where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle ABC ,$ we obtain
$AC ^{2}= AB ^{2}+ BC ^{2}$
$=(8 k)^{2}+(15 k)^{2}$
$=64 k^{2}+225 k^{2}$
$=289 k^{2}$
$AC =17 k$
$\sin A=\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }$
$=\frac{15 k}{17 k}=\frac{15}{17}$
$\sec A=\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle A }$
$=\frac{ AC }{ AB }=\frac{17}{8}$
Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$
Evaluate the following:
$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
Evaluate:
$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
Evaluate the following:
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$