Given $15 \cot A =8,$ find $\sin A$ and $\sec A .$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Consider a right-angled triangle, right-angled at $B.$

$\cot A=\frac{\text { Side adjacent to } \angle A }{\text { Side opposite to } \angle A }$

$=\frac{A B}{B C}$

It is given that,

$\cot A=\frac{8}{15}$

$\frac{A B}{B C}=\frac{8}{15}$

Let $AB$ be $8 k$. Therefore, $BC$ will be $15 k ,$ where $k$ is a positive integer.

Applying Pythagoras theorem in $\triangle ABC ,$ we obtain

$AC ^{2}= AB ^{2}+ BC ^{2}$

$=(8 k)^{2}+(15 k)^{2}$

$=64 k^{2}+225 k^{2}$

$=289 k^{2}$

$AC =17 k$

$\sin A=\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }$

$=\frac{15 k}{17 k}=\frac{15}{17}$

$\sec A=\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle A }$

$=\frac{ AC }{ AB }=\frac{17}{8}$

1043-s9

Similar Questions

Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$

Evaluate the following:

$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

Evaluate:

$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

Evaluate the following:

$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$