Given $15 \cot A =8,$ find $\sin A$ and $\sec A .$
Consider a right-angled triangle, right-angled at $B.$
$\cot A=\frac{\text { Side adjacent to } \angle A }{\text { Side opposite to } \angle A }$
$=\frac{A B}{B C}$
It is given that,
$\cot A=\frac{8}{15}$
$\frac{A B}{B C}=\frac{8}{15}$
Let $AB$ be $8 k$. Therefore, $BC$ will be $15 k ,$ where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle ABC ,$ we obtain
$AC ^{2}= AB ^{2}+ BC ^{2}$
$=(8 k)^{2}+(15 k)^{2}$
$=64 k^{2}+225 k^{2}$
$=289 k^{2}$
$AC =17 k$
$\sin A=\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }$
$=\frac{15 k}{17 k}=\frac{15}{17}$
$\sec A=\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle A }$
$=\frac{ AC }{ AB }=\frac{17}{8}$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$
If $\sin A =\frac{3}{4},$ calculate $\cos A$ and $\tan A$.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$
If $\angle B$ and $\angle Q$ are acute angles such that $\sin B =\sin Q$, then prove that $\angle B =\angle Q$.
In $\triangle ABC ,$ right-angled at $B , AB =24 \,cm , BC =7 \,cm .$ Determine:
$(i)$ $\sin A, \cos A$
$(ii)$ $\sin C, \cos C$