Given $\tan A=\frac{4}{3},$ find the other trigonometric ratios of the $\angle A$
Let us first draw a right $\Delta ABC$ (see $Fig.$).
Now, we know that $\tan A =\frac{ BC }{ AB }=\frac{4}{3}$
Therefore, if $BC =4 k,$ then $AB =3 k,$ where $k$ is a positive number.
Now, by using the Pythagoras Theorem, we have
$AC ^{2}= AB ^{2}+ BC ^{2}=(4 k)^{2}+(3 k)^{2}=25 k ^{2}$
$AC =5 k$
Now, we can write all the trigonometric ratios using their definitions.
$\sin A=\frac{B C}{A C}=\frac{4 k}{5 k}=\frac{4}{5}$
$\cos A=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}$
Therefore, $\cot A=\frac{1}{\tan A}=\frac{3}{4}, \operatorname{cosec} A=\frac{1}{\sin A}=\frac{5}{4}$ and $\sec A=\frac{1}{\cos A}=\frac{5}{3}$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$
In $\triangle$ $PQR,$ right-angled at $Q$ (see $Fig.$), $PQ =3 \,cm$ and $PR =6 \,cm$. Determine $\angle QPR$ and $\angle PRQ$.
Express the trigonometric ratios $\sin A , \sec A$ and $\tan A$ in terms of $\cot A$.
If $3 \cot A=4,$ check whether $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ or not.
$(\sec A+\tan A)(1-\sin A)=..........$