State whether the following are true or false. Justify your answer.

$\sin \theta=\cos \theta$ for all values of $\theta$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sin \theta=\cos \theta$ for all values of $\theta$

This is true when $\theta=45^{\circ}$

As $\sin 45^{\circ}=\frac{1}{\sqrt{2}}$

$\cos 45^{\circ}=\frac{1}{\sqrt{2}}$

It is not true for all other values of $\theta$.

$\sin 30^{\circ}=\frac{1}{2}$ and   $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$

Hence, the given statement is false.

Similar Questions

If $\sin A =\frac{3}{4},$ calculate $\cos A$ and $\tan A$.

$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=........$

If $\cot \theta=\frac{7}{8},$ evaluate:

$(i)$ $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$

$(ii)$ $\cot ^{2} \theta$

$\sin 2 A=2 \sin A$ is true when $A=$

Evaluate:

$\cos 48^{\circ}-\sin 42^{\circ}$