Consider $\triangle ACB$, right-angled at $C$, in which $AB =29$ units, $BC =21$ units and $\angle ABC =\theta$ (see $Fig.$). Determine the values of

$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$

$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$

1043-3

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In $\Delta ACB ,$ we have

$AC=\sqrt{ AB ^{2}- BC ^{2}}=\sqrt{(29)^{2}-(21)^{2}}$

$=\sqrt{(29-21)(29+21)}=\sqrt{(8)(50)}=\sqrt{400}=20$ units

So, $\sin \theta=\frac{A C}{A B}=\frac{20}{29}, \cos \theta=\frac{B C}{A B}=\frac{21}{29}$

Now,

$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta=\left(\frac{20}{29}\right)^{2}+\left(\frac{21}{29}\right)^{2}=\frac{20^{2}+21^{2}}{29^{2}}=\frac{400+441}{841}=1$

and

$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta=\left(\frac{21}{29}\right)^{2}-\left(\frac{20}{29}\right)^{2}=\frac{(21+20)(21-20)}{29^{2}}=\frac{41}{841}$

Similar Questions

Express $\sin 67^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angles between $0^{\circ}$ and $45^{\circ}$

State whether the following are true or false. Justify your answer.

$(i)$ $\cos A$ is the abbreviation used for the cosecant of angle $A$

$(ii)$ cot $A$ is the product of cot and $A$.

$(iii)$ $\sin \theta=\frac{4}{3}$ for some angle $\theta$.

State whether the following are true or false. Justify your answer.

The value of $\sin \theta$ increases as $\theta$ increases.

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

Write all the other trigonometric ratios of $\angle A$ in terms of $\sec$ $A$.