Given $\sec \theta=\frac{13}{12},$ calculate all other trigonometric ratios.
Consider a right-angle triangle $\triangle ABC ,$ right-angled at point $B$.
$\sec \theta=\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle \theta}$
$\frac{13}{12}=\frac{ AC }{ AB }$
If $AC$ is $13 k , AB$ will be $12 k,$ where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle A B C$, we obtain
$(A C)^{2}=(A B)^{2}+(B C)^{2}$
$(13 k)^{2}=(12 k)^{2}+(B C)^{2}$
$169 k^{2}=144 k^{2}+B C^{2}$
$25 k^{2}=B C^{2}$
$BC =5 k$
$\sin \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Hypotenuse }}=\frac{B C}{A C}=\frac{5 k}{13 k}=\frac{5}{13}$
$\cos \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Hypotenuse }}=\frac{ AB }{ AC }=\frac{12 k}{13 k}=\frac{12}{13}$
$\tan \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Side adjacent to } \angle \theta}=\frac{ BC }{ AB }=\frac{5 k}{12 k}=\frac{5}{12}$
$\cot \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Side opposite to } \angle \theta}=\frac{ AB }{ BC }=\frac{12 k}{5 k}=\frac{12}{5}$
$\operatorname{cosec} \theta=\frac{\text { Hypotenuse }}{\text { Side opposite to } \angle \theta}=\frac{ AC }{ BC }=\frac{13 k}{5 k }=\frac{13}{5}$
In $\triangle$ $ABC,$ right-angled at $B$, $AB =5\, cm$ and $\angle ACB =30^{\circ}$ (see $Fig.$). Determine the lengths of the sides $BC$ and $AC .$
If $\sin A =\frac{3}{4},$ calculate $\cos A$ and $\tan A$.
$9 \sec ^{2} A-9 \tan ^{2} A=..........$
$\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$
In triangle $ABC ,$ right -angled at $B ,$ if $\tan A =\frac{1}{\sqrt{3}},$ find the value of:
$(i)$ $\sin A \cos C+\cos A \sin C$
$(ii)$ $\cos A \cos C-\sin A \sin C$