State whether the following are true or false. Justify your answer.

The value of $\sin \theta$ increases as $\theta$ increases.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The value of $\sin \theta$ increases as $\theta$ increases in the interval of $0^{\circ}<\theta<90^{\circ}$ as

$\sin 0^{\circ}=0$

$\sin 30^{\circ}=\frac{1}{2}=0.5$

$\sin 45^{\circ}=\frac{1}{\sqrt{2}}=0.707$

$\sin 60^{\circ}=\frac{\sqrt{3}}{2}=0.866$

$\sin 90^{\circ}=1$

Hence, the given statement is true.

Similar Questions

If $\tan A =\cot B ,$ prove that $A + B =90^{\circ}$

If $\tan ( A + B )=\sqrt{3}$ and $\tan ( A - B )=\frac{1}{\sqrt{3}} ; 0^{\circ}< A + B \leq 90^{\circ} ; A > B ,$ find $A$ and $B$

$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=..........$

If $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right),$ where $4 A$ is an acute angle, find the value of $A$. (in $^{\circ}$)

If $\sin 3 A =\cos \left( A -26^{\circ}\right),$ where $3 A$ is an acute angle, find the value of $A= . . . . ^{\circ}$.