Evaluate the following:
$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
$=\frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}}+2}=\frac{\frac{1}{\sqrt{2}}}{\frac{2+2 \sqrt{3}}{\sqrt{3}}}$
$=\frac{\sqrt{3}}{\sqrt{2}(2+2 \sqrt{3})}=\frac{\sqrt{3}}{2 \sqrt{2}+2 \sqrt{6}}$
$=\frac{\sqrt{3}(2 \sqrt{6}-2 \sqrt{2})}{(2 \sqrt{6}+2 \sqrt{2})(2 \sqrt{6}-2 \sqrt{2})}$
$=\frac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{(2 \sqrt{6})^{2}-(2 \sqrt{2})^{2}}=\frac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{24-8}=\frac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{16}$
$=\frac{\sqrt{18}-\sqrt{6}}{8}=\frac{3 \sqrt{2}-\sqrt{6}}{8}$
Evaluate:
$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$
Given $\tan A=\frac{4}{3},$ find the other trigonometric ratios of the $\angle A$
State whether the following are true or false. Justify your answer.
The value of $\cos \theta$ increases as $\theta$ increases
If $\sin A =\frac{3}{4},$ calculate $\cos A$ and $\tan A$.
$(\sec A+\tan A)(1-\sin A)=..........$