- Home
- Standard 10
- Mathematics
8. Introduction to Trigonometry
hard
Evaluate the following:
$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
Option A
Option B
Option C
Option D
Solution
$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
$=\frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}}+2}=\frac{\frac{1}{\sqrt{2}}}{\frac{2+2 \sqrt{3}}{\sqrt{3}}}$
$=\frac{\sqrt{3}}{\sqrt{2}(2+2 \sqrt{3})}=\frac{\sqrt{3}}{2 \sqrt{2}+2 \sqrt{6}}$
$=\frac{\sqrt{3}(2 \sqrt{6}-2 \sqrt{2})}{(2 \sqrt{6}+2 \sqrt{2})(2 \sqrt{6}-2 \sqrt{2})}$
$=\frac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{(2 \sqrt{6})^{2}-(2 \sqrt{2})^{2}}=\frac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{24-8}=\frac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{16}$
$=\frac{\sqrt{18}-\sqrt{6}}{8}=\frac{3 \sqrt{2}-\sqrt{6}}{8}$
Standard 10
Mathematics