Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

$L.H.S.=(\operatorname{cosec} \theta-\cot \theta)^{2}$

$=\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2}$

$=\frac{(1-\cos \theta)^{2}}{(\sin \theta)^{2}}=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$

$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}=\frac{(1-\cos \theta)^{2}}{(1-\cos \theta)(1+\cos \theta)}=\frac{1-\cos \theta}{1+\cos \theta}$

$=$ $R.H.S.$

Similar Questions

If $\tan ( A + B )=\sqrt{3}$ and $\tan ( A - B )=\frac{1}{\sqrt{3}} ; 0^{\circ}< A + B \leq 90^{\circ} ; A > B ,$ find $A$ and $B$

Evaluate the following:

$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

Evaluate:

$\cos 48^{\circ}-\sin 42^{\circ}$

$\sin 2 A=2 \sin A$ is true when $A=$

Express $\sin 67^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angles between $0^{\circ}$ and $45^{\circ}$