સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો $2n + 3n^2$ છે અને નવી સમાંતર શ્રેણી બનાવમાં આવે છે કે જેમાં પ્રથમ પદ સમાન હોય અને સામાન્ય તફાવત બમણો હોય તો નવી શ્રેણીના $n$ પદનો સરવાળો મેળવો.
$n + 4n^2$
$6n^2 - n$
$n^2 + 4n$
$3n + 2n^2$
જો $a, b, c$ સમાંતર શ્રેણીમાં હોય, તો $(a - c)^2 = ……$
જો $m$ સમાંતર મધ્યક $1$ અને $31$ વચ્ચે મૂકેલ હોય તો $7$ માં અને $(m - 1)$ માં મધ્યકનો ગુણોત્તર $5:9$ છે, તો $m$ નું મૂલ્ય ........ છે.
જો $a$ અને $100$ ની વચ્ચે $n$ સમાંતર મધ્યકો મૂકવામાં આવે કે જેથી પ્રથમ મધ્યકનો અંતિમ મધ્યક સાથેનો ગુણોત્તર $1: 7$ અને $a + n =33$ થાય, તો $n$ ની કિમત ...............છે.
$-6,-\frac{11}{2},-5, \ldots \ldots$ સમાંતર શ્રેણીનાં કેટલાં પ્રથમ પદનો સરવાળો $-25$ થાય ?
સમાંતર શ્રેણીનું પ્રથમ પદ $10$ અને છેલ્લુ પદ $50$ છે તથા તેના બધાં પદોનો સરવાળો $300$ છે, તો તેના પદની સંખ્યા $n = ….$