જો સમીકરણ $(b -c)x^2 + (c - a)x + (a - b) = 0$ ના ઉકેલો સમાન હોય, તો $a, b, c$ કઈ શ્રેણી હશે ?
સમાંતર શ્રેણી
સમગુણોત્તર શ્રેણી
સ્વરિત શ્રેણી
આપેલ પૈકી એક પણ નહિ
એક બહુકોણમાં બે ક્રમિક અંતઃકોણોનો તફાવત $5^{\circ}$ છે. જો સૌથી નાનો ખૂણો $120^{\circ}$ નો હોય, તો તે બહુકોણની બાજુઓની સંખ્યા શોધો.
જો સમાંતર શ્રેણીનું $p, q$ અને $r$ મું પદ અનુક્રમે $a, b$ અને $c$ હોય, તો $[a (q - r) + b(r - p) + c(p -q)]=.…….$
ધારોકે અંકો $a,b,c$ સમાંતર શ્રેણીમાં છે.આ ત્રણેય અંકોનો ત્રણ વાર ઉપયોગ કરીને $9-$અંકો વાળી એવી સંખ્યા બનાવવામાં આવે છે કે જેથી ત્રણ ક્રમિક અંકો ઓછામાં ઓછા એક વાર સમાંતર શ્રેણીમાં હોય.આ પ્રકારની કેટલી સંખ્યાઓ બનાવી શકાય છે?
$a_1$, $a_2$, $a_3$, ......., $a_{100}$ સમાંતર શ્રેણીમાં છે. જ્યાં $a_1 = 3$ અને ${S_p}\, = \,\sum\limits_{i\, = \,1}^p {{a_i},\,1\,\, \le \,\,p\,\, \le \,\,100.} $ છે. કોઈ પણ પૂર્ણાક $n$ માટે $m = 5n$ લો. જો $S_m/S_n$ એ $n$ ઉપર આધારીત ન હોય તો $a_2= ......$
ધારોકે $\alpha, \beta$ અને $\gamma$ ત્રણ ધન વાસ્તવિક સંખ્યાઓ છે. ધારોકે $f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in R$ અને $g: R \rightarrow R$ એવું છે કે જેથી પ્રત્યેક $x \in R$ માટે $g(f(x))=x$ થાય. ને $a _{1}, a _{2}, a _{3}, \ldots, a _{ n }$ સમાંતર શ્રેણીમાં હોય અને તેનો મધ્યક શૂન્ય હોય, તો $f\left(g\left(\frac{1}{ n } \sum_{i=1}^{ n } f\left( a _{i}\right)\right)\right)$ ની કિંમત .............. છે.