दिया है $\mathop A\limits^ \to + \mathop B\limits^ \to + \mathop C\limits^ \to $ $= 0$, तीन में से दो सदिश परिमाण में समान हैं तथा तीसरे सदिश का परिमाण पहले दो समान परिमाण वाले सदिशों में से किसी एक का $\sqrt 2 $ गुना है तो सदिशों के मध्य कोण है

  • A

    $30°, 60°, 90°$

  • B

    $45°, 45°, 90°$

  • C

    $45°, 60°, 90°$

  • D

    $90°, 135°, 135°$

Similar Questions

दो बलों ${F_1}$ व ${F_2}$ का सदिश योग ${F_3}$ के तुल्य है, इसका चित्रण निम्न में किस चित्र में किया गया है

किसी बिन्दु पर कार्य करने वाले दो बलों के परिमाणों का योग $18$ है तथा उनके परिणामी का परिमाण $12$ है। यदि परिणामी छोटे परिमाण के बल से $90^°$ के कोण पर हो तो बलों के परिमाण होंगे

  • [AIEEE 2002]

सदिशों $\mathop A\limits^ \to ,\,\mathop B\limits^ \to $ तथा $\mathop C\limits^ \to $के परिमाण क्रमश: $3, 4$ तथा $5$ इकाई हैं। यदि $\mathop A\limits^ \to + \mathop B\limits^ \to = \mathop C\limits^ \to $, तब सदिश $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण होगा

  • [AIPMT 1988]

कार्तीय  निर्देशांक पद्धति में तीन सदिश निम्न प्रकार प्रदर्शित हैं
$\mathop a\limits^ \to = 4\hat i - \hat j$, $\mathop b\limits^ \to = - 3\hat i + 2\hat j$ तथा $\mathop c\limits^ \to = - \hat k$
जहाँ $\hat i,\,\hat j,\,\hat k$ क्रमश: $X, Y$ और $Z-$ अक्ष के सापेक्ष इकाई सदिश है। इन सदिशों के संयोग के अनुदिश इकाई सदिश $\hat r$ है

कथन $I$ - दो बल $(\overrightarrow{ P }+\overrightarrow{ Q })$ तथा $(\overrightarrow{ P }-\overrightarrow{ Q })$ जहाँ $\overrightarrow{ P } \perp \overrightarrow{ Q }$, जब एक दूसरे से $\theta_{1}$ कोण पर लगते हैं, तो परिणामी का परिमाण $\sqrt{3\left( P ^{2}+ Q ^{2}\right)}$ होता है तथा जब $\theta_{2}$ कोण पर लगते है, तो परिणामी का परिमाण $\sqrt{2\left( P ^{2}+ Q ^{2}\right)}$ होता है। यह तभी सम्भव होता है जब $\theta_{1}<\theta_{2}$ है।
कथन $II$ - उपयुर्क्त दी गयी दशा में $\theta_{1}=60^{\circ}$ तथा $\theta_{2}=90^{\circ}$ उपर्युक्त कथनों के अवलोकन में, नीचे दिए गये विकल्पों से उपयुक्त उत्तर चुनिए।

  • [JEE MAIN 2021]