किसी सदिश $\overrightarrow{ A }$ को $\Delta \theta$ रेडियन $(\Delta \theta<<1)$ घुमा देने पर एक नया सदिश $\overrightarrow{ B }$ प्राप्त होता है। इस अवस्था में $\overrightarrow{ B }-\overrightarrow{ A } \mid$ होगा :
$\left| {\vec A} \right|\,\Delta \theta $
$\left| {\vec B} \right|\,\Delta \theta - \left| {\vec A} \right|\,$
$\left| {\vec A} \right|\,\left( {1 - \frac{{\Delta {\theta ^2}}}{2}} \right)$
$0$
विभिन्न तलों में कितने न्यूनतम अशून्य सदिशों का योग शून्य परिणामी देगा
समान परिमाण $\mathrm{R}$ के दो सदिशों $\overrightarrow{\mathrm{A}}$ व $\overrightarrow{\mathrm{B}}$ के बीच का कोण $\theta$ है तब
$\mathrm{A}$ व $\frac{\mathrm{A}}{2}$ परिणाम के दो बल एक-दूसरे के लम्बवत हैं। उनके परिणामी का परिमाण है:
$\mathop P\limits^ \to $ तथा $\mathop Q\limits^ \to $ का परिणामी $\mathop P\limits^ \to $ के लम्बवत् है तो $\mathop P\limits^ \to $ तथा $\mathop Q\limits^ \to $ के बीच कोण होगा
दो सदिशों के परिणामी के अधिकतम होने के लिए, उनके मध्य कितना कोण ....... $^o$ होना चाहिए