Let ${E_1},{E_2},{E_3}$ be three arbitrary events of a sample space $S$. Consider the following statements which of the following statements are correct

  • A

    $P$ (only one of them occurs)

    $ = P({\bar E_1}{E_2}{E_3} + {E_1}{\bar E_2}{E_3} + {E_1}{E_2}{\overline E _3})$

  • B

    $P$ (none of them occurs)

    $ = P({\overline E _1} + {\overline E _2} + {\overline E _3})$

  • C

    $P$ (atleast one of them occurs)

    $ = P({E_1} + {E_2} + {E_3})$

  • D

    $P$ (all the three occurs)$ = P({E_1} + {E_2} + {E_3})$

    where $P({E_1})$denotes the probability of ${E_1}$ and ${\bar E_1}$ denotes complement of ${E_1}$.

Similar Questions

Given two mutually exclusive events $A$ and $B$ such that $P(A) = 0.45$ and $P(B) = 0.35,$ then $P (A$ or $B ) =$

Three persons $P, Q$ and $R$ independently try to hit a target . If the probabilities of their hitting the target are $\frac{3}{4},\frac{1}{2}$ and $\frac{5}{8}$ respectively, then the probability that the target is hit by $P$ or $Q$ but not by $R$ is

  • [JEE MAIN 2017]

Prove that if $E$ and $F$ are independent events, then so are the events $\mathrm{E}$ and $\mathrm{F}^{\prime}$.

Let $A$ and $B$ are two events and $P(A') = 0.3$, $P(B) = 0.4,\,P(A \cap B') = 0.5$, then $P(A \cup B')$ is

If $A$ and $B$ are arbitrary events, then