Given two mutually exclusive events $A$ and $B$ such that $P(A) = 0.45$ and $P(B) = 0.35,$ then $P (A$ or $B ) =$
$0.1$
$0.25$
$0.15$
$0.8$
Three athlete $A, B$ and $C$ participate in a race competetion. The probability of winning $A$ and $B$ is twice of winning $C$. Then the probability that the race win by $A$ or $B$, is
The probability of happening at least one of the events $A$ and $B$ is $0.6$. If the events $A$ and $B$ happens simultaneously with the probability $0.2$, then $P\,(\bar A) + P\,(\bar B) = $
Two cards are drawn at random and without replacement from a pack of $52$ playing cards. Finds the probability that both the cards are black.
$A$ and $B$ are two independent events. The probability that both $A$ and $B$ occur is $\frac{1}{6}$ and the probability that neither of them occurs is $\frac{1}{3}$. Then the probability of the two events are respectively
If $A$ and $B$ are two independent events, then $P\,(A + B) = $