Two events $A$ and $B$ will be independent, if
$A$ and $B$ are mutually exclusive
$P\left(A^{\prime} B^{\prime}\right)=[1-P(A)][1-P(B)]$
$P(A)=P(B)$
$P(A)+P(B)=1$
$P(A \cup B) = P(A \cap B)$ if and only if the relation between $P(A)$ and $P(B)$ is
If $\mathrm{A}$ and $\mathrm{B}$ are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ find $\mathrm{P}$ $($ not $\mathrm{A}$ and not $\mathrm{B})$
Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that One of them is black and other is red.
Fill in the blanks in following table :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.5$ | $0.35$ | ......... | $0.7$ |
Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that First ball is black and second is red.