Two events $A$ and $B$ will be independent, if

  • A

    $A$ and $B$ are mutually exclusive

  • B

    $P\left(A^{\prime} B^{\prime}\right)=[1-P(A)][1-P(B)]$

  • C

    $P(A)=P(B)$

  • D

    $P(A)+P(B)=1$

Similar Questions

$P(A \cup B) = P(A \cap B)$ if and only if the relation between $P(A)$ and $P(B)$ is

  • [IIT 1985]

If $\mathrm{A}$ and $\mathrm{B}$ are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ find $\mathrm{P}$ $($ not $\mathrm{A}$ and not $\mathrm{B})$

Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that One of them is black and other is red.

Fill in the blanks in following table :

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$0.5$ $0.35$ .........  $0.7$

Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that First ball is black and second is red.