Two events $A$ and $B$ will be independent, if

  • A

    $A$ and $B$ are mutually exclusive

  • B

    $P\left(A^{\prime} B^{\prime}\right)=[1-P(A)][1-P(B)]$

  • C

    $P(A)=P(B)$

  • D

    $P(A)+P(B)=1$

Similar Questions

An integer is chosen at random from the integers $\{1,2,3, \ldots \ldots . .50\}$. The probability that the chosen integer is a multiple of atleast one of $4,6$ and $7$ is

  • [JEE MAIN 2024]

Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that  Atleast one of them will not qualify the examination.

If $A, B, C$ are three events associated with a random experiment, prove that

$P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$

 $\mathrm{A}$ die is thrown. If $\mathrm{E}$ is the event $'$ the number appearing is a multiple of $3'$ and $F$ be the event $'$ the number appearing is even $^{\prime}$ then find whether $E$ and $F$ are independent ?

If $P\,(A) = \frac{1}{4},\,\,P\,(B) = \frac{5}{8}$ and $P\,(A \cup B) = \frac{3}{4},$ then $P\,(A \cap B) = $