Half life of a radioactive substance is $T$. The time taken for all the nuclei to disintegrate will be
$2T$
$T^2$
$4T$
$Uncertain$
In a radioactive decay process , the negatively charged emitted $\beta -$ particles are
The half life of radium is $1620$ years and its atomic weight is $226\, k\,gm$ per kilomol. The number of atoms that will decay from its $1\, gm$ sample per second will be
(Avogadro's number $N = 6.02 \times {10^{26}}$atom/kilomol)
The half life of a radioactive sample undergoing $\alpha$ - decay is $1.4 \times 10^{17}$ s. If the number of nuclei in the sample is $2.0 \times 10^{21}$, the activity of the sample is nearly
Activity of a radioactive substance is $R_1$ at time $t_1$ and $R_2$ at time $t_2(t_2 > t_1).$ Then the ratio $\frac{R_2}{R_1}$ is :
In a radioactive decay chain reaction, ${ }_{90}^{230} Th$ nucleus decays into ${ }_{84}^{214} Po$ nucleus. The ratio of the number of $\alpha$ to number of $\beta^{-}$particles emitted in this process is. . . . .