11.Thermodynamics
medium

$27°C$ पर हीलियम का आयतन $8$ लीटर है। अचानक दबाकर इसका आयतन $1$ लीटर कर दिया जाता है। इस गैस का ताप ....... $^oC$ होगा $[\gamma = 5/3]$

A

$108$

B

$9327$

C

$1200$

D

$927$

Solution

$T{V^{\gamma  – 1}} = $ नियतांक $ \Rightarrow {T_2} = {T_1}{\left( {\frac{{{V_1}}}{{{V_2}}}} \right)^{\gamma  – 1}} = {927^o}C$

Standard 11
Physics

Similar Questions

एक ऊष्मारोधी (thermally insulating) बेलन के मध्य में एक घर्षणहीन चलायमान (frictionless movable) तथा ऊष्मारोधी द्विभाजक (partition) चित्रानुसार, लगा है। इसके दोनों भागों में एक-एक मोल (mole) आदर्श गैस हैं, जिसकी स्थिर आयतन पर विशिष्ट ऊष्मा $C_v=2 R$ है। यहाँ, $R$ गैस नियतांक है। आरंभ में, दोनों भागों का आयतन $V_0$ तथा तापमान $T_0$ है। बाएँ भाग में एक विद्युत हीटर लगा है, जिसको बहुत कम शक्ति (very low power) पर चलाकर बांयी तरफ की गैस को $Q$ ऊष्मा दी जाती है। इससे द्विभाजक, धीमी गति से दांयी तरफ जाता है जिससे दांयी तरफ का आयतन घटकर $V_0 / 2$ हो जाता है। इसके फलस्वरूप बांयी एवं दार्यीं भागों में गैस का तापमान क्रमशः $T_L$ तथा $T_R$ हो जाता है। हीटर, बेलन तथा द्विभाजक के तापमानों में परिवर्तन उपेक्षणीय है।

($1$) $\frac{T_R}{T_0}$ का मान है –

$(A)$ $\sqrt{2}$ $(B)$ $\sqrt{3}$ $(C)$ $2$ $(D)$ $3$

($2$) $\frac{Q}{R T_0}$ का मान है –

$(A)$ $4(2 \sqrt{2}+1)$ $(B)$ $4(2 \sqrt{2}-1)$ $(C)$ $(5 \sqrt{2}+1)$ $(D)$ $(5 \sqrt{2}-1)$

दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)

normal
(IIT-2021)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.