विभिन्न तलों में कितने न्यूनतम अशून्य सदिशों का योग शून्य परिणामी देगा
$2$
$3$
$4$
$5$
$\vec{A}$ और $\vec{B}$ दो सदिश राशियाँ हैं, जहाँ $\vec{A}=a \hat{\imath}$ और $\vec{B}=a(\cos \omega t \hat{\imath}+\sin \omega t \hat{\jmath})$ हैं। यहाँ $a$ एक स्थिरांक (constant) है और $\omega=\pi / 6 rad s ^{-1}$ है। यदि $|\vec{A}+\vec{B}|=\sqrt{3}|\vec{A}-\vec{B}|$ प्रथम बार समय $t=\tau$ पर होता है, तो $\tau$ का मान, सेकेंडों (seconds) में, .......... है।
चित्र में सदिशों $\overrightarrow{ OA }, \overrightarrow{ OB }$ तथा $\overrightarrow{ OC }$ के परिमाण समान है। $x$ - अक्ष के साथ $\overrightarrow{ OA }+\overrightarrow{ OB }-\overrightarrow{ OC }$ की दिशा होगी।
यदि दो सदिशों के योग का परिमाण उन दो सदिशों के अन्तर के परिमाण के बराबर है, तो इन सदिशों के बीच का कोण है