विभिन्न तलों में कितने न्यूनतम अशून्य सदिशों का योग शून्य परिणामी देगा
$2$
$3$
$4$
$5$
दो सदिशों $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के परिमाण समान है। $(\overrightarrow{ A }+\overrightarrow{ B })$ का परिमाण $(\overrightarrow{ A }-\overrightarrow{ B })$ के परिमाण का $n$ गुना है। $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के मध्य कोण है।
दिया है $a + b + c + d = 0$, नीचे दिए गए कथनों में से कौन-सा सही है
$(a)$ $a , b , c$ तथा $d$ में से प्रत्येक शून्य सदिश है,
$(b)$ $( a + c )$ का परिमाण $( b + d )$ के परिमाण के बराबर है, नहीं हो सकता
$(d)$ यदि $a$ तथा $d$ सरेखीय नहीं हैं तो $b + c$ अवश्य ही $a$ तथा $d$ के समतल में होगा, और यह $a$ तथा $d$ के अनुदिश होगा यद् वे सरंखीय हैं ।
$\vec{a}$ से $\vec{f}$ तक छ: सदिशों के परिमाणों और दिशाओं को, दिये गये चित्र (आरेख) में प्रदशिर्शित किया गया है। निम्निलित में से कौन सा कथन इनके लिये सत्य (सही) है?
दो बलों, जिनमें प्रत्येक का परिमाण $F$ है, का परिणामी भी $F$ हो तो दोनों बलों के बीच कोण ....... $^o$ है
दो बल इस प्रकार हैं कि इनके योग का परिमाण $18\, N$ एवं इनका परिणामी (जिसका परिमाण $12\, N$ है) कम परिमाण के बल पर लम्बवत् है। तब बलों के परिमाण है