How many reflexive relation are there on a set ' with $3$ elements

  • A

    ${2^3}$

  • B

    ${2^6}$

  • C

    ${2^9}$

  • D

    ${2^{12}}$

Similar Questions

Let $I$ be the set of positve integers. $R$ is a relation on the set $I$ given by $R =\left\{ {\left( {a,b} \right) \in I \times I\,|\,\,{{\log }_2}\left( {\frac{a}{b}} \right)} \right.$ is a non-negative integer$\}$, then $R$ is 

Let $A=\{-4,-3,-2,0,1,3,4\}$ and $R =\{( a , b ) \in A$ $\times A : b =| a |$ or $\left.b ^2= a +1\right\}$ be a relation on $A$. Then the minimum number of elements, that must be added to the relation $R$ so that it becomes reflexive and symmetric, is $........$.

  • [JEE MAIN 2023]

The relation $R =\{( a , b ): \operatorname{gcd}( a , b )=1,2 a \neq b , a , b \in Z \}$ is:

  • [JEE MAIN 2023]

Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation $R$ in the set $A$ of human beings in a town at a particular time given by

$R =\{(x, y): x$ is exactly $7\,cm $ taller than $y\}$

A relation from $P$ to $Q$ is