1.Relation and Function
medium

Let $A=\{1,2,3, \ldots 20\}$. Let $R_1$ and $R_2$ two relation on $\mathrm{A}$ such that $\mathrm{R}_1=\{(\mathrm{a}, \mathrm{b}): \mathrm{b}$ is divisible by $\mathrm{a}\}$ $\mathrm{R}_2=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}$ is an integral multiple of $\mathrm{b}\}$. Then, number of elements in $R_1-R_2$ is equal to_____.

A

$44$

B

$46$

C

$45$

D

$40$

(JEE MAIN-2024)

Solution

$ \mathrm{n}\left(\mathrm{R}_1\right)=20+10+6+5+4+3+2+2+2 $

$ +2+\underbrace{1+\ldots+1}_{10 \text { times }}$

$\mathrm{n}\left(\mathrm{R}_1\right)=66$

$\mathrm{R}_1 \cap \mathrm{R}_2=\{(1,1),(2,2), \ldots(20,20)\}$

$\mathrm{n}\left(\mathrm{R}_1 \cap \mathrm{R}_2\right)=20$

$\mathrm{n}\left(\mathrm{R}_1-\mathrm{R}_2\right)=\mathrm{n}\left(\mathrm{R}_1\right)-\mathrm{n}\left(\mathrm{R}_1 \cap \mathrm{R}_2\right)$

$=\mathrm{n}\left(\mathrm{R}_1\right)-20$

$=66-20$

$\mathrm{R}_1-\mathrm{R}_2=46 \text { Pair }$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.