Let $A=\{2,3,6,7\}$ and $B=\{4,5,6,8\}$. Let $R$ be a relation defined on A $\times$ B by $\left(a_1, b_1\right) R\left(a_2, b_2\right)$ is and only if $a_1+a_2=b_1+b_2$. Then the number of elements in $\mathrm{R}$ is ...........
$34$
$25$
$31$
$20$
Show that the relation $R$ in the set $\{1,2,3\}$ given by $R =\{(1,1),\,(2,2),$ $(3,3)$, $(1,2)$, $(2,3)\}$ is reflexive but neither symmetric nor transitive.
Let $A=\{1,2,3, \ldots \ldots .100\}$. Let $R$ be a relation on A defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $\mathrm{R} \subset \mathrm{R}_1$ and the number of elements in $\mathrm{R}_1$ is $\mathrm{n}$. Then, the minimum value of $n$ is..........................
Let $A =\{2,3,4\}$ and $B =\{8,9,12\}$. Then the number of elements in the relation $R=\left\{\left(\left(a_1, b_1\right),\left(a_2, b_2\right)\right) \in(A \times B, A \times B): a_1\right.$ divides $b_2$ and $a_2$ divides $\left.b_1\right\}$ is:
Let $A = \{1, 2, 3, 4\}$ and $R$ be a relation in $A$ given by $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$. Then $R$ is
Let $R$ be a relation defined on $N \times N$ by $(a, b) R(c, d) \Leftrightarrow a(b + c) = c(a + d).$ Then $R$ is