$-6,-\frac{11}{2},-5, \ldots \ldots$ સમાંતર શ્રેણીનાં કેટલાં પ્રથમ પદનો સરવાળો $-25$ થાય ? 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the sum of $n$ terms of the given $A.P.$ be $-25$

It is known that,

$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

Where $n=$ number of terms, $a=$ first term, and $d=$ common difference

Here, $a=-6$

$d=-\frac{11}{2}+6=\frac{-11+12}{2}=\frac{1}{2}$

Therefore, we obtain

$-25=\frac{n}{2}\left[2 \times(-6)+(n-1)\left(\frac{1}{2}\right)\right]$

$\Rightarrow-50=n\left[-12+\frac{n}{2}-\frac{1}{2}\right]$

$\Rightarrow-50=n\left[-\frac{25}{2}+\frac{n}{2}\right]$

$\Rightarrow-100=n(-25+n)$

$\Rightarrow n^{2}-25 n+100=0$

$\Rightarrow n^{2}-5 n-20 n+100=0$

$\Rightarrow n(n-5)-20(n-5)=0$

$\Rightarrow n=20$ or $5$

Similar Questions

જો $a_1, a_2, .. a_{24}$ સમાંતર શ્રેણીમાં હોય અને $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$ થાય, તો આ સમાંતર શ્રેણીના $24$ પદોનો સરવાળો કેટલો થાય ?

અહી $S_{1}$ એ સમાંતર શ્રેણીના પ્રથમ $2 n$ નો સરવાળો દર્શાવે છે અને $S_{2}$ તે જ સમાંતર શ્રેણીના પ્રથમ $4n$ નો સરવાળો દર્શાવે છે. જો $\left( S _{2}- S _{1}\right) =1000$ હોયતો પ્રથમ $6 n$ પદોનો સરવાળો મેળવો.

  • [JEE MAIN 2021]

ધારોકે $a_{1}, a_{2,}, \ldots \ldots, a_{ n }, \ldots \ldots . .$ એ પ્રાકૃતિક સંખ્યાઆની એક સમાંતર શ્રેણી છે. જો આ શ્રેણીના પ્રથમ પાંચ પદોના સરવાળા અને પ્રથમ નવ પદોના સરવાળાનો ગુણોત્તર $5: 17$ હોય અને $110 < a_{15} < 120$ હોય, તો આ શ્રેણીના પ્રથમ દસ પદોનો સરવાળો ......... છે.

  • [JEE MAIN 2022]

અહી $S_{n}$ એ સમાંતર શ્રેણીના $n$- નો સરવાળો દર્શાવે છે. જો $S_{10}=530, S_{5}=140$ તો  $\mathrm{S}_{20}-\mathrm{S}_{6}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

શ્રેણી $2 + 5 + 8 +.....$ upto $50$ પદો અને શ્રેણી $3 + 5 + 7 + 9.....$ upto $60$ પદોમાં સામાન્ય પદોની સંખ્યા મેળવો