समांतर श्रेणी $-6,-\frac{11}{2},-5, \ldots$ के कितने पदों का योगफल $-25$ है ?
Let the sum of $n$ terms of the given $A.P.$ be $-25$
It is known that,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Where $n=$ number of terms, $a=$ first term, and $d=$ common difference
Here, $a=-6$
$d=-\frac{11}{2}+6=\frac{-11+12}{2}=\frac{1}{2}$
Therefore, we obtain
$-25=\frac{n}{2}\left[2 \times(-6)+(n-1)\left(\frac{1}{2}\right)\right]$
$\Rightarrow-50=n\left[-12+\frac{n}{2}-\frac{1}{2}\right]$
$\Rightarrow-50=n\left[-\frac{25}{2}+\frac{n}{2}\right]$
$\Rightarrow-100=n(-25+n)$
$\Rightarrow n^{2}-25 n+100=0$
$\Rightarrow n^{2}-5 n-20 n+100=0$
$\Rightarrow n(n-5)-20(n-5)=0$
$\Rightarrow n=20$ or $5$
यदि $\log _{3} 2, \log _{3}\left(2^{x}-5\right), \log _{3}\left(2^{x}-\frac{7}{2}\right)$ एक समांतर श्रेढ़ी में है, तो $x$ का मान बराबर है .............. |
समीकरण $(x + 1) + (x + 4) + (x + 7) + ......... + (x + 28) = 155$ के लिए $x$ का मान है
यदि किसी समांतर श्रेणी के $n$ वें पद का योगफल $3 n^{2}+5 n$ हैं तथा इसका $m$ वाँ पद $164$ है, तो $m$ का मान ज्ञात कीजिए।
अनुक्रम $\frac{5}{{\sqrt 7 }}$, $\frac{6}{{\sqrt 7 }}$, $\sqrt 7 $....... है
यदि किसी समान्तर श्रेणी के $11$ वें पद का दुगना, उसके $21$ वें पद के $7$ गुने के बराबर हो, तो $25$ वाँ पद होगा