समांतर श्रेणी $-6,-\frac{11}{2},-5, \ldots$ के कितने पदों का योगफल $-25$ है ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the sum of $n$ terms of the given $A.P.$ be $-25$

It is known that,

$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

Where $n=$ number of terms, $a=$ first term, and $d=$ common difference

Here, $a=-6$

$d=-\frac{11}{2}+6=\frac{-11+12}{2}=\frac{1}{2}$

Therefore, we obtain

$-25=\frac{n}{2}\left[2 \times(-6)+(n-1)\left(\frac{1}{2}\right)\right]$

$\Rightarrow-50=n\left[-12+\frac{n}{2}-\frac{1}{2}\right]$

$\Rightarrow-50=n\left[-\frac{25}{2}+\frac{n}{2}\right]$

$\Rightarrow-100=n(-25+n)$

$\Rightarrow n^{2}-25 n+100=0$

$\Rightarrow n^{2}-5 n-20 n+100=0$

$\Rightarrow n(n-5)-20(n-5)=0$

$\Rightarrow n=20$ or $5$

Similar Questions

एक समांतर श्रेणी में $15$ पद हैं। इसका पहला पद $5$ है तथा योग $390$ है। मध्य पद है

माना कि अनुक्रम $a_{n}$ निम्नलिखित रूप में परिभाषित है

${a_1} = 1,{a_n} = {a_{n - 1}} + 2$ for $n\, \ge \,2$

तो अनुक्रम के पाँच पद ज्ञात कीजिए तथा संगत श्रेणी लिखिए।

भिन्न $A.P.$ बनाई गई हैं, जिनके प्रथम पद $100$ , अंतिम पद $199$ तथा सार्व अंतर पुर्णांक हैं। इस प्रकार की सभी $A.P.$, जिनमें कम से कम $3$ पद तथा अधिक से अधिक $33$ पद हैं, के सार्व अंतरों का योगफल है

  • [JEE MAIN 2022]

मान लें कि $a_n$, एक अंकगणितीय श्रेढ़ी $(arithmetic\,progression)$ है, जहाँ $n \geq 1$ है और इस श्रेढ़ी का पहला पद $2$ और सार्व अंतर $(common\,difference)$ $4$ है। मान लें कि $M_n$ पहले $n$ पदों का औसत है, तब योग $\sum \limits_{n=1}^{10} M_n$ क्या होगा ?

  • [KVPY 2019]

यदि किसी समान्तर श्रेणी का प्रथम पद $10$ व अन्तिम पद $50$ है तथा सभी पदों का योग $300$ हो, तो पदों की संख्या है