समांतर श्रेणी $-6,-\frac{11}{2},-5, \ldots$ के कितने पदों का योगफल $-25$ है ?
Let the sum of $n$ terms of the given $A.P.$ be $-25$
It is known that,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Where $n=$ number of terms, $a=$ first term, and $d=$ common difference
Here, $a=-6$
$d=-\frac{11}{2}+6=\frac{-11+12}{2}=\frac{1}{2}$
Therefore, we obtain
$-25=\frac{n}{2}\left[2 \times(-6)+(n-1)\left(\frac{1}{2}\right)\right]$
$\Rightarrow-50=n\left[-12+\frac{n}{2}-\frac{1}{2}\right]$
$\Rightarrow-50=n\left[-\frac{25}{2}+\frac{n}{2}\right]$
$\Rightarrow-100=n(-25+n)$
$\Rightarrow n^{2}-25 n+100=0$
$\Rightarrow n^{2}-5 n-20 n+100=0$
$\Rightarrow n(n-5)-20(n-5)=0$
$\Rightarrow n=20$ or $5$
दो समान्तर श्रेणीयों $3,7,11, \ldots .407$ एवं $2,9,16, \ldots .709$ में उभयनिष्ठ पदों की संख्या है।
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=\frac{2 n-3}{6}$
यदि $a,\;b,\;c$ समान्तर श्रेणी में हों, तो $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}}$ =
एक समान्तर श्रेणी के $m$ व $n$ पदों के योगों का अनुपात ${m^2}:{n^2}$ है, तो $m$ वें व $n$ वें पदों का अनुपात होगा
यदि ${a^2},\;{b^2},\;{c^2}$ समान्तर श्रेणी में हों, तो ${(b + c)^{ - 1}},\;{(c + a)^{ - 1}}$ व ${(a + b)^{ - 1}}$ होंगे