समांतर श्रेणी $-6,-\frac{11}{2},-5, \ldots$ के कितने पदों का योगफल $-25$ है ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the sum of $n$ terms of the given $A.P.$ be $-25$

It is known that,

$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

Where $n=$ number of terms, $a=$ first term, and $d=$ common difference

Here, $a=-6$

$d=-\frac{11}{2}+6=\frac{-11+12}{2}=\frac{1}{2}$

Therefore, we obtain

$-25=\frac{n}{2}\left[2 \times(-6)+(n-1)\left(\frac{1}{2}\right)\right]$

$\Rightarrow-50=n\left[-12+\frac{n}{2}-\frac{1}{2}\right]$

$\Rightarrow-50=n\left[-\frac{25}{2}+\frac{n}{2}\right]$

$\Rightarrow-100=n(-25+n)$

$\Rightarrow n^{2}-25 n+100=0$

$\Rightarrow n^{2}-5 n-20 n+100=0$

$\Rightarrow n(n-5)-20(n-5)=0$

$\Rightarrow n=20$ or $5$

Similar Questions

किसी समान्तर श्रेणी का $n$ वाँ पद $3n - 1$ है, तो इसके प्रथम पाँच पदों का योगफल होगा

यदि $x_{1}, x_{2}, \ldots ., x_{n}$ तथा $\frac{1}{h_{1}}, \frac{1}{h_{2}}, \ldots ., \frac{1}{h_{n}}$ दो ऐसी समांतर श्रेढियां हैं कि $x_{3}=h_{2}=8$ तथा $x_{8}=h_{7}=20$ है, तो $x_{5} . h_{10}$ का मान है

  • [JEE MAIN 2018]

यदि किसी समांतर श्रेणी $25,22,19, \ldots$ के कुछ पदों का योगफल $116$ है तो अंतिम पद ज्ञात कीजिए।

यदि एक शून्येतर समान्तर श्रेढ़ी का $19$ वां पद शून्य है, तो इसका ($49$ वाँ) : ($29$ वाँ पद) है 

  • [JEE MAIN 2019]

यदि ${a^2},\;{b^2},\;{c^2}$ समान्तर श्रेणी में हों, तो ${(b + c)^{ - 1}},\;{(c + a)^{ - 1}}$ व ${(a + b)^{ - 1}}$ होंगे