$EQUATION$ शब्द के अक्षरों से कितने, अर्थपूर्ण या अर्थहीन, शब्दों की रचना की जा सकती है, जबकि स्वर तथा व्यंजक एक साथ रहते हैं ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In the word $EQUATION$, there are $5$ vowels, namely, $A , E , I , O$ and $U$ and $3$ consonants, namely $Q , T$ and $N.$

since all the vowels and consonants have to occur together, both $(AEIOU)$ and $(QTN)$ can be assumed as single objects. Then, the permutations of these $2$ objects taken all at a time are counted.

This number would be $^{2} P_{2}=2 !$

Corresponding to each of these permutations, there are $5 !$ Permutations of the five vowels taken all at a time and $3 !$ Permutations of the $3$ consonants taken all at a time.

Hence, by multiplication principle, required number of words $2! \times 5! \times 3!=1440$

Similar Questions

किसी परीक्षा के एक प्रश्नपत्र में $12$ प्रश्न हैं जो क्रमश: $5$ तथा $7$ प्रश्नों वाले दो खंडों में विभक्त हैं अर्थात् खंड $I$ और खंड $II$. एक विद्यार्थी को प्रत्येक खंड से न्यूनतम $3$ प्रश्नों का चयन करते हुए कुल $8$ प्रश्नों को हल करना है। एक विद्यार्थी कितने प्रकार से प्रश्नों का चयन कर सकता है ?

एक इंजीनियर को हर महीने के पहले $15$ दिनों के दौरान चार दिनों के लिये एक कारखाने का दौरा करने की आवश्यकता है तथा यह अनिवार्य है कि लगातार दो दिन कोई भी यात्रा न करें। तब सभी संभव तरीकों की संख्या, जिसमें कारखाने में इस तरह के दौरे इंजीनियर द्वारा $1-15$ जून $2021$ के दौरान किये जा सकते है, होगी

  • [IIT 2020]

यदि ${ }^{n} C _{8}={ }^{n} C _{2},$ तो ${ }^{n} C _{2}$ ज्ञात कीजिए।

$6$ पुस्तकों में से एक या अधिक पुस्तकों को कितने प्रकार से चुना जा सकता है

$n$वस्तुओं में से $r$ वस्तुओं को लेकर बनाये गये क्रमचयों की संख्या, जब $p$ वस्तुयें हमेशा सम्मिलित की जाती हैं , होगी