How the period of oscillation depend on the mass of block attached to the end of spring ?

Similar Questions

Two identical springs of spring constant $k$ are attached to a block of mass $m$ and to fixed supports as shown in Figure. Show that when the mass is displaced from its equilibrium position on either side, it executes a simple harmonic motion. Find the period of oscillations.

Two springs having spring constant $k_1$ and $k_2$ is connected in series, its resultant spring constant will be $2\,unit$. Now if they connected in parallel its resultant spring constant will be $9\,unit$, then find the value of $k_1$ and $k_2$.

A mass $m$ is suspended from the two coupled springs connected in series. The force constant for springs are ${K_1}$ and ${K_2}$. The time period of the suspended mass will be

  • [AIIMS 2019]

A spring is stretched by $5 \,\mathrm{~cm}$ by a force $10 \,\mathrm{~N}$. The time period of the oscillations when a mass of $2 \,\mathrm{~kg}$ is suspended by it is :(in $s$)

  • [NEET 2021]

In an elevator, a spring clock of time period $T_S$ (mass attached to a spring) and a pendulum clock of time period $T_P$ are kept. If the elevator accelerates upwards