Identify the statements which are True.

  • A
    the equation of the director circle of the ellipse, $5x^2 + 9y^2 = 45 $ is $ x^2 + y^2 = 14.$ 
  • B
    $P$  $\&$ $Q $ are the points with eccentric angles $ \theta \& \theta + \alpha $ on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} $ $= 1$ , then the area of the triangle $OPQ$  is independent of $\theta .$ 
  • C
    the point of intersection of any tangent to a parabola & the perpendicular to it from the focus lies on the tangent at the vertex.
  • D
    all of the above  

Similar Questions

The eccentricity of an ellipse, with its centre at the origin, is $\frac{1}{2}$. If one of the directrices is $x = 4$, then the equation of the ellipse is

  • [AIEEE 2004]

The equation of an ellipse whose focus $(-1, 1)$, whose directrix is $x - y + 3 = 0$ and whose eccentricity is $\frac{1}{2}$, is given by

An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $P\left( {\frac{1}{2},\;1} \right)$. Its one directrix is the common tangent nearer to the point $P$, to the circle ${x^2} + {y^2} = 1$ and the hyperbola ${x^2} - {y^2} = 1$. The equation of the ellipse in the standard form, is

  • [IIT 1996]

Define the collections $\left\{ E _1, E _2, E _3, \ldots ..\right\}$ of ellipses and $\left\{ R _1, K _2, K _3, \ldots ..\right\}$ of rectangles as follows : $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$

$K _1$ : rectangle of largest area, with sides parallel to the axes, inscribed in $E _1$;

$E_n$ : ellipse $\frac{x^2}{a_n^2}+\frac{y^2}{b_{n}^2}=1$ of largest area inscribed in $R_{n-1}, n>1$;

$R _{ n }$ : rectangle of largest area, with sides parallel to the axes, inscribed in $E _{ n }, n >1$.

Then which of the following options is/are correct?

$(1)$ The eccentricities of $E _{18}$ and $E _{19}$ are NOT equal

$(2)$ The distance of a focus from the centre in $E_9$ is $\frac{\sqrt{5}}{32}$

$(3)$ The length of latus rectum of $E_Q$ is $\frac{1}{6}$

$(4)$ $\sum_{n=1}^N\left(\right.$ area of $\left.R_2\right)<24$, for each positive integer $N$

  • [IIT 2019]

Number of points on the ellipse $\frac{x^2}{50} + \frac{y^2}{20} = 1$ from which pair of  perpendicular tangents are drawn to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is :-