A rod of length $12 \,cm$ moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point $P$ on the rod, which is $3\, cm$ from the end in contact with the $x-$ axis.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $AB$ be the rod making an angle $\theta$ with $O X$ and $P ( x ,\, y )$ be the point on it such that $AP =3\,cm$

Then, $PB = AB - AP =(12-3)\, cm =9\, cm$  $[ AB =12 \,cm ]$

From $P$, draw $PQ \perp OY$ and $PR \perp OX$.

In $\Delta PBQ$ ,           $\cos \theta=\frac{ PQ }{ PB }=\frac{x}{9}$

In $\Delta PRA$ ,           $\sin \theta=\frac{ PR }{ PA }=\frac{y}{3}$

since,   $\sin ^{2} \theta+\cos ^{2} \theta=1$

$\left(\frac{y}{3}\right)^{2}+\left(\frac{x}{9}\right)^{2}=1$

Or,     $\frac{x^{2}}{81}+\frac{y^{2}}{9}=1$

Thus, the equation of the locus of point $P$ on the rod is $\frac{x^{2}}{81}+\frac{y^2} {9}=1$.

874-s87

Similar Questions

Consider an elIipse, whose centre is at the origin and its major axis is along the $x-$ axis. If its eccentricity is $\frac{3}{5}$ and the distance between its foci is $6$, then the area (in sq. units) of the quadrilateral inscribed in the ellipse, with the vertices as the vertices of the ellipse, is

  • [JEE MAIN 2017]

The line $y=x+1$ meets the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ at two points $P$ and $Q$. If $r$ is the radius of the circle with $PQ$ as diameter then $(3 r )^{2}$ is equal to

  • [JEE MAIN 2022]

Let the tangents at the points $P$ and $Q$ on the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$ meet at the point $R(\sqrt{2}, 2 \sqrt{2}-2)$. If $S$ is the focus of the ellipse on its negative major axis, then $SP ^{2}+ SQ ^{2}$ is equal to.

  • [JEE MAIN 2022]

The equation of the ellipse referred to its axes as the axes of coordinates with latus rectum of length $4$ and distance between foci $4 \sqrt 2$ is-

If the distance between a focus and corresponding directrix of an ellipse be $8$ and the eccentricity be $1/2$, then length of the minor axis is