10-2. Parabola, Ellipse, Hyperbola
hard

A rod of length $12 \,cm$ moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point $P$ on the rod, which is $3\, cm$ from the end in contact with the $x-$ axis.

A

$\frac{x^{2}}{81}+\frac{y^2} {9}=1$

B

$\frac{x^{2}}{81}+\frac{y^2} {9}=1$

C

$\frac{x^{2}}{81}+\frac{y^2} {9}=1$

D

$\frac{x^{2}}{81}+\frac{y^2} {9}=1$

Solution

Let $AB$ be the rod making an angle $\theta$ with $O X$ and $P ( x ,\, y )$ be the point on it such that $AP =3\,cm$

Then, $PB = AB – AP =(12-3)\, cm =9\, cm$  $[ AB =12 \,cm ]$

From $P$, draw $PQ \perp OY$ and $PR \perp OX$.

In $\Delta PBQ$ ,           $\cos \theta=\frac{ PQ }{ PB }=\frac{x}{9}$

In $\Delta PRA$ ,           $\sin \theta=\frac{ PR }{ PA }=\frac{y}{3}$

since,   $\sin ^{2} \theta+\cos ^{2} \theta=1$

$\left(\frac{y}{3}\right)^{2}+\left(\frac{x}{9}\right)^{2}=1$

Or,     $\frac{x^{2}}{81}+\frac{y^{2}}{9}=1$

Thus, the equation of the locus of point $P$ on the rod is $\frac{x^{2}}{81}+\frac{y^2} {9}=1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.