A rod of length $12 \,cm$ moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point $P$ on the rod, which is $3\, cm$ from the end in contact with the $x-$ axis.
Let $AB$ be the rod making an angle $\theta$ with $O X$ and $P ( x ,\, y )$ be the point on it such that $AP =3\,cm$
Then, $PB = AB - AP =(12-3)\, cm =9\, cm$ $[ AB =12 \,cm ]$
From $P$, draw $PQ \perp OY$ and $PR \perp OX$.
In $\Delta PBQ$ , $\cos \theta=\frac{ PQ }{ PB }=\frac{x}{9}$
In $\Delta PRA$ , $\sin \theta=\frac{ PR }{ PA }=\frac{y}{3}$
since, $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\left(\frac{y}{3}\right)^{2}+\left(\frac{x}{9}\right)^{2}=1$
Or, $\frac{x^{2}}{81}+\frac{y^{2}}{9}=1$
Thus, the equation of the locus of point $P$ on the rod is $\frac{x^{2}}{81}+\frac{y^2} {9}=1$.
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$
Let $\mathrm{A}(\alpha, 0)$ and $\mathrm{B}(0, \beta)$ be the points on the line $5 x+7 y=50$. Let the point $P$ divide the line segment $A B$ internally in the ratio $7: 3$. Let $3 x-$ $25=0$ be a directrix of the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and the corresponding focus be $S$. If from $S$, the perpendicular on the $\mathrm{x}$-axis passes through $\mathrm{P}$, then the length of the latus rectum of $\mathrm{E}$ is equal to
The distance between the directrices of the ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{20}} = 1$ is
The ellipse ${x^2} + 4{y^2} = 4$ is inscribed in a rectangle aligned with the coordinate axes, which in trun is inscribed in another ellipse that passes through the point $(4,0) $ . Then the equation of the ellipse is :
Let $T_1$ and $T_2$ be two distinct common tangents to the ellipse $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ and the parabola $P: y^2=12 x$. Suppose that the tangent $T_1$ touches $P$ and $E$ at the point $A_1$ and $A_2$, respectively and the tangent $T_2$ touches $P$ and $E$ at the points $A_4$ and $A_3$, respectively. Then which of the following statements is(are) true?
($A$) The area of the quadrilateral $A_1 A _2 A _3 A _4$ is $35$ square units
($B$) The area of the quadrilateral $A_1 A_2 A_3 A_4$ is $36$ square units
($C$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-3,0)$
($D$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-6,0)$