The co-ordinates of the foci of the ellipse $3{x^2} + 4{y^2} - 12x - 8y + 4 = 0$ are
$(1, 2), (3, 4)$
$(1, 4), (3, 1)$
$(1, 1), (3, 1)$
$(2, 3), (5, 4)$
For $0 < \theta < \frac{\pi}{2}$, four tangents are drawn at the four points $(\pm 3 \cos \theta, \pm 2 \sin \theta)$ to the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. If $A(\theta)$ denotes the area of the quadrilateral formed by these four tangents, the minimum value of $A(\theta)$ is
Consider the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let $S(p, q)$ be a point in the tirst quadrant such that $\frac{p^2}{9}+\frac{q^2}{4}>1$. I wo tangents are drawn from $S$ to the ellipse, of which one meets the ellipse at one end point of the minor axis and the other meets the ellipse at a point $T$ in the fourth quadrant. Let $R$ be the vertex of the ellipse with positive $x$-coordinate and $O$ be the center of the ellipse. If the area of the triangle $\triangle O R T$ is $\frac{3}{2}$, then which of the following options is correct?
In an ellipse, with centre at the origin, if the difference of the lengths of major axis and minor axis is $10$ and one of the foci is at $(0, 5\sqrt 3 )$, then the length of its latus rectum is
If the maximum distance of normal to the ellipse $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$, from the origin is $1$ , then the eccentricity of the ellipse is:
If $x = 9$ is the chord of contact of the hyperbola ${x^2} - {y^2} = 9$, then the equation of the corresponding pair of tangents is