The locus of the poles of normal chords of an ellipse is given by

  • A

    $\frac{{{a^6}}}{{{x^2}}} + \frac{{{b^6}}}{{{y^2}}} = {({a^2} - {b^2})^2}$

  • B

    $\frac{{{a^3}}}{{{x^2}}} + \frac{{{b^3}}}{{{y^2}}} = {({a^2} - {b^2})^2}$

  • C

    $\frac{{{a^6}}}{{{x^2}}} + \frac{{{b^6}}}{{{y^2}}} = {({a^2} + {b^2})^2}$

  • D

    $\frac{{{a^3}}}{{{x^2}}} + \frac{{{b^3}}}{{{y^2}}} = {({a^2} + {b^2})^2}$

Similar Questions

A rod of length $12 \,cm$ moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point $P$ on the rod, which is $3\, cm$ from the end in contact with the $x-$ axis.

If the eccentricity of the two ellipse $\frac{{{x^2}}}{{169}} + \frac{{{y^2}}}{{25}} = 1$ and $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ are equal, then the value of $a/b$ is

Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1\,at\,(3\sqrt 3 \cos \theta ,\sin \theta )$  where $\theta \in (0, \pi /2)$ . Then the value of $\theta$ such that sum of intercepts on axes made by this tangent is minimum, is

Maximum length of chord of the ellipse $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$, such that eccentric angles of its extremities differ by $\frac{\pi }{2}$ is 

The ellipse ${x^2} + 4{y^2} = 4$ is inscribed in a rectangle aligned with the coordinate axes, which in trun is inscribed in another ellipse that passes through the point $(4,0) $  . Then the equation of the ellipse is :

  • [AIEEE 2009]