3 and 4 .Determinants and Matrices
medium

यदि $A =\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ हो तो सत्यापित कीजिए कि $A ^{\prime} A = I$

Option A
Option B
Option C
Option D

Solution

$A=\left[\begin{array}{ll}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$

$\therefore A^{\prime}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

$A^{\prime} A=\left[\begin{array}{ll}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$

$=\left[\begin{array}{cc}(\cos \alpha)(\cos \alpha)+(-\sin \alpha)(-\sin \alpha) & (\cos \alpha)(\sin \alpha)+(-\sin \alpha)(\cos \alpha) \\ (\sin \alpha)(\cos \alpha)+(\cos \alpha)(-\sin \alpha) & (\sin \alpha)(\sin \alpha)+(\cos \alpha)(\cos \alpha)\end{array}\right]$

$\left[\begin{array}{cc}\cos ^{2} \alpha+\sin ^{2} \alpha & \sin \alpha \cos \alpha-\sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha-\sin \alpha \cos \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha\end{array}\right]$

$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$

Hence, we have verified that $A ^{\prime}A=1$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.