If ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (where $i = \sqrt{-1}),$ then value of $x_1.x_2.x_3......\infty ,$ is :-
$1$
$-1$
$-i$
$i$
If the sum of the series $1 + \frac{2}{x} + \frac{4}{{{x^2}}} + \frac{8}{{{x^3}}} + ....\infty $ is a finite number, then
In a $G.P.,$ the $3^{rd}$ term is $24$ and the $6^{\text {th }}$ term is $192 .$ Find the $10^{\text {th }}$ term.
If $a,\;b,\;c$ are in $A.P.$, then ${3^a},\;{3^b},\;{3^c}$ shall be in
If ${a^2} + a{b^2} + 16{c^2} = 2(3ab + 6bc + 4ac)$, where $a,b,c$ are non-zero numbers. Then $a,b,c$ are in
If $1\, + \,\sin x\, + \,{\sin ^2}x\, + \,...\infty \, = \,4\, + \,2\sqrt 3 ,\,0\, < \,x\, < \,\pi $ then