Gujarati
8. Sequences and Series
easy

If the sum of three terms of $G.P.$ is $19$ and product is $216$, then the common ratio of the series is

A

$ - \frac{3}{2}$

B

$\frac{3}{2}$

C

$2$

D

$3$

Solution

(b) Let three terms of $G.P.$ are $a,\;ar,\;a{r^2}$. Then

$a + ar + a{r^2} = 19 $

$\Rightarrow a[1 + r + {r^2}] = 19$ …..$(i)$

$a\;.\;ar\;.\;a{r^2} = 216$

$\Rightarrow {a^3}{r^3} = 216$

$\Rightarrow ar = 6$ …..$(ii)$

Dividing $(ii)$ by $(i),$

$\frac{6}{r} + \frac{6}{r}r + \frac{6}{r}{r^2} = 19 $

$\Rightarrow \frac{6}{r} + 6 + 6r = 19$

$ \Rightarrow {r^2} – \frac{{13}}{6}r + 1 = 0$.

Hence $r = \frac{3}{2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.