If  ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ then

  • A

    $\left| z \right|\, < \,\frac{3}{2}$

  • B

    $\left| z \right|\, > \,\frac{3}{2}$

  • C

    $\left| z \right|\, > {2}$

  • D

    $\left| z \right|\, < {2}$

Similar Questions

If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is

If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to

If ${x_n} > {x_{n - 1}} > ... > {x_2} > {x_1} > 1$ then the value of ${\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}.....{\log _{{x_n}}}{x_n}^{x_{n - 1}^{{ {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} ^{{x_1}}}}}$ is equal to

The solution of the equation ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$

${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $