If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is
$10$
$30$
$20$
None of these
$\log _{10} x y=2$
$x y=100$
$\frac{x+y}{2} \geq \sqrt{x y}$
$(x+y) \geq 20$
Logarithm of $32\root 5 \of 4 $ to the base $2\sqrt 2 $ is
If ${\log _{0.04}}(x – 1) \ge {\log _{0.2}}(x – 1)$ then $x$ belongs to the interval
The value of $\sqrt {(\log _{0.5}^24)} $ is
If ${\log _{10}}2 = 0.30103,{\log _{10}}3 = 0.47712,$ the number of digits in ${3^{12}} \times {2^8} $ is
If ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| – 3}}{{\left| z \right| + 1}}} \right)\, < \, – 2$ then
Confusing about what to choose? Our team will schedule a demo shortly.