If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is
$10$
$30$
$20$
None of these
$\log ab - \log |b| = $
If ${\log _5}a.{\log _a}x = 2,$then $x$ is equal to
$\sum\limits_{r = 1}^{89} {{{\log }_3}(\tan \,\,{r^o})} = $
If $a, b, c$ are distinct positive numbers, each different from $1$, such that $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$ $ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ then $abc =$
For $y = {\log _a}x$ to be defined $'a'$ must be