If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is
$10$
$30$
$20$
None of these
$\log _{10} x y=2$
$x y=100$
$\frac{x+y}{2} \geq \sqrt{x y}$
$(x+y) \geq 20$
Let $a , b , c$ be three distinct positive real numbers such that $(2 a)^{\log _{\varepsilon} a}=(b c)^{\log _e b}$ and $b^{\log _e 2}=a^{\log _e c}$. Then $6 a+5 b c$ is equal to $……..$.
For $y = {\log _a}x$ to be defined $'a'$ must be
If ${\log _{10}}3 = 0.477$, the number of digits in ${3^{40}}$ is
Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{\frac{1}{6}} \sqrt{6}}$. If $x, y \in R$ are such that $3 x+2 y=\log _a(18)^{\frac{5}{4}} \text { and }$ $2 x-y=\log _b(\sqrt{1080}),$ then $4 x+5 y$ is equal to. . . .
If ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0,$ then $x$ is equal to
Confusing about what to choose? Our team will schedule a demo shortly.