If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is
$10$
$30$
$20$
None of these
$\log _{10} x y=2$
$x y=100$
$\frac{x+y}{2} \geq \sqrt{x y}$
$(x+y) \geq 20$
The value of $(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots . to \infty\right)}$ is equal to
The number of real values of the parameter $k$ for which ${({\log _{16}}x)^2} – {\log _{16}}x + {\log _{16}}k = 0$ with real coefficients will have exactly one solution is
${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
The value of ${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ……)}}$ is
If ${x^{{3 \over 4}{{({{\log }_3}x)}^2} + {{\log }_3}x – {5 \over 4}}} = \sqrt 3 $ then $x$ has
Confusing about what to choose? Our team will schedule a demo shortly.