If ${A_\lambda } = \left( {\begin{array}{*{20}{c}}
\lambda &{\lambda  - 1}\\
{\lambda  - 1}&\lambda 
\end{array}} \right);\,\lambda  \in N$ then $|A_1| + |A_2| + ..... + |A_{300}|$ is equal to

  • A

    $(299)^2$

  • B

    $(300)^2$

  • C

    $(301)^2$

  • D

    None of these

Similar Questions

If the sum of squares of all real values of $\alpha$, for which the lines $2 x-y+3=0,6 x+3 y+1=0$ and $\alpha x+2 y-2=0$ do not form a triangle is $p$, then the greatest integer less than or equal to $\mathrm{p}$ is $.........$

  • [JEE MAIN 2024]

$\Delta = \left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + b + c}\\{3a}&{4a + 3b}&{5a + 4b + 3c}\\{6a}&{9a + 6b}&{11a + 9b + 6c}\end{array}\,} \right|$where $a = i,b = \omega ,c = {\omega ^2}$, then $\Delta $is equal to

Consider system of equations in $x$ , $y$ and $z$

$12x + by + cz = 0$ ;   $ax + 24y + cz = 0$  ;   $ax + by + 36z = 0$ .

(where $a$ , $b$ , $c$ are real numbers, $a \ne 12$ , $b \ne 24$ , $c \ne 36$ ).

If system of equation has solution and $z \ne 0$, then value of  $\frac{1}{{a - 12}} + \frac{2}{{b - 24}} + \frac{3}{{c - 36}}$ is

$\left| {\,\begin{array}{*{20}{c}}5&3&{ - 1}\\{ - 7}&x&{ - 3}\\9&6&{ - 2}\end{array}\,} \right| = 0$, then $ x$ is equal to

If the system of equations $x+y+z=6 \,; \,2 x+5 y+\alpha z=\beta  \,; \, x+2 y+3 z=14$ has infinitely many solutions, then $\alpha+\beta$ is equal to.

  • [JEE MAIN 2022]