- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
If ${A_\lambda } = \left( {\begin{array}{*{20}{c}}
\lambda &{\lambda - 1}\\
{\lambda - 1}&\lambda
\end{array}} \right);\,\lambda \in N$ then $|A_1| + |A_2| + ..... + |A_{300}|$ is equal to
A
$(299)^2$
B
$(300)^2$
C
$(301)^2$
D
None of these
Solution
$\sum\limits_{\lambda = 1}^{\lambda = 300} {\left| A \right|\sum\limits_{\lambda = 1}^{\lambda = 300} {\left[ {{\lambda ^2} – {{\left( {\lambda – 1} \right)}^2}} \right]} = {{\left( {300} \right)}^2}} $
Standard 12
Mathematics