- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
If $\left| {\,\begin{array}{*{20}{c}}{ - {a^2}}&{ab}&{ac}\\{ab}&{ - {b^2}}&{bc}\\{ac}&{bc}&{ - {c^2}}\end{array}\,} \right| = K{a^2}{b^2}{c^2},$ then $K = $
A
$-4$
B
$2$
C
$4$
D
$8$
Solution
(c) $\left| {\,\begin{array}{*{20}{c}}{ – {a^2}}&{ab}&{ac}\\{ab}&{ – {b^2}}&{bc}\\{ac}&{bc}&{ – {c^2}}\end{array}} \right| = abc\left| {\,\begin{array}{*{20}{c}}{ – a}&b&c\\a&{ – b}&c\\a&b&{ – c}\end{array}\,} \right|$
$ = (abc)(abc)\left| {\,\begin{array}{*{20}{c}}{ – 1}&1&1\\1&{ – 1}&1\\1&1&{ – 1}\end{array}} \right| = {a^2}{b^2}{c^2}( – 1)( – 4)$
$ = 4{a^2}{b^2}{c^2} = K{a^2}{b^2}{c^2}$,
$(given) ==> K = 4.$
Standard 12
Mathematics